Letzte Aktualisierung: 2025-07-09 19:51:51

Gesamtübersicht

Übersicht über CONTRAfluran-Filter

agc.id median.duration mean.flow mean.balanced.anaesthesia mean.airway mean.laparoscopic n.cases.lama.nonlap.tiva n.cases.tube.nonlap.tiva n.cases.lama.lap.tiva n.cases.tube.lap.tiva n.cases.lama.nonlap.inha n.cases.tube.nonlap.inha n.cases.lama.lap.inha n.cases.tube.lap.inha sum.dura.lama.nonlap.tiva sum.dura.tube.nonlap.tiva sum.dura.lama.lap.tiva sum.dura.tube.lap.tiva sum.dura.lama.nonlap.inha sum.dura.tube.nonlap.inha sum.dura.lama.lap.inha sum.dura.tube.lap.inha med.flow.lama.nonlap.tiva med.flow.tube.nonlap.tiva med.flow.lama.lap.tiva med.flow.tube.lap.tiva med.flow.lama.nonlap.inha med.flow.tube.nonlap.inha med.flow.lama.lap.inha med.flow.tube.lap.inha ncases available weight1 weight center or water.trap
4 CH0100022340 97.22 0.68 0.98 0.84 0.14 0 0 0 0 47 99 3 18 0.00 0.00 0 0.00 3075.32 14500.72 132.83 2737.72 0.00 0.00 0.0 0.00 0.35 0.30 0.50 0.32 171 1 1408.8 1408.8 4 04-06 0
5 CH0100022358 87.60 0.51 0.98 0.95 0.32 0 0 0 1 4 24 2 14 0.00 0.00 0 98.77 157.95 3419.03 97.58 1486.18 0.00 0.00 0.0 3.00 0.50 0.38 0.52 0.30 46 1 1394.6 1394.6 4 04-05 0
6 CH0100022359 47.85 1.95 0.74 0.57 0.00 2 8 0 0 19 11 0 0 165.33 461.93 0 0.00 856.65 904.28 0.00 0.00 3.00 3.00 0.0 0.00 0.50 0.35 0.00 0.00 40 1 1495.6 1495.6 4 04-01 0
7 CH0100022374 140.29 0.48 0.94 0.99 0.01 0 7 0 0 3 201 0 1 0.00 1996.65 0 0.00 180.68 31157.87 0.00 270.90 0.00 0.55 0.0 0.00 0.30 0.35 0.00 0.25 212 1 1445.7 1445.7 4 04-03 0
8 CH0100022440 111.97 0.46 0.63 0.72 0.00 3 3 0 0 3 10 0 0 359.13 455.38 0 0.00 288.18 1207.27 0.00 0.00 0.50 0.35 0.0 0.00 0.30 0.30 0.00 0.00 20 1 1368.1 1368.1 4 04-02 0
9 CH0100022449 273.62 0.51 1.00 0.99 0.86 0 1 0 0 5 10 0 99 0.00 92.27 0 0.00 303.63 4424.45 0.00 29567.20 0.00 3.30 0.0 0.00 0.45 0.32 0.00 0.30 115 1 1450.4 1450.4 4 04-04 0
11 CH0100022685 63.00 0.35 0.95 0.91 0.32 5 1 0 0 11 50 0 26 220.00 39.00 0 0.00 411.00 3900.00 0.00 2177.00 0.50 0.30 0.0 0.00 0.40 0.30 0.00 0.30 95 1 1445.7 1445.7 11 11-01 0
12 CH0100022762 85.50 0.34 0.88 0.78 0.02 11 1 0 0 9 41 0 2 744.00 23.00 0 0.00 596.00 4681.00 0.00 153.00 0.30 1.00 0.0 0.00 0.30 0.30 0.00 0.30 64 1 1434.2 1434.2 11 11-02 0
13 CH0100026809 62.00 0.00 0.00 0.00 0.00 2 1 0 0 9 44 0 11 57.00 44.00 0 0.00 227.00 4155.00 0.00 1051.00 0.30 0.35 0.0 0.00 0.30 0.30 0.00 0.30 69 1 1416.9 1416.9 11 11-01 0
15 CH0100027240 84.00 0.00 0.00 0.00 0.00 0 2 0 1 3 18 0 50 0.00 253.00 0 207.00 238.00 1338.00 0.00 5224.00 0.00 0.55 0.0 0.50 0.40 0.40 0.00 0.40 75 1 1413.4 1413.4 9 09-02 0
16 CH0100027253 95.00 0.33 0.92 0.84 0.03 9 0 0 0 8 50 0 2 581.00 0.00 0 0.00 575.00 5829.00 0.00 204.00 0.30 0.00 0.0 0.00 0.38 0.30 0.00 0.55 69 1 1406.9 1406.9 11 11-02 0
17 CH0100027255 61.00 0.32 0.99 0.86 0.38 1 0 0 0 15 32 0 25 28.00 0.00 0 0.00 696.00 2411.00 0.00 1942.00 0.30 0.00 0.0 0.00 0.35 0.30 0.00 0.30 73 1 1412.1 1412.1 11 11-01 0
18 CH0100027395 62.00 0.32 1.00 0.85 0.39 1 0 0 0 8 16 0 13 14.00 0.00 0 0.00 440.00 1367.00 0.00 1157.00 0.50 0.00 0.0 0.00 0.30 0.30 0.00 0.30 38 1 1323.0 1323.0 11 11-01 0
19 CH0100027397 95.00 0.34 0.94 0.75 0.00 13 3 0 0 34 93 0 0 643.00 230.00 0 0.00 2792.00 10263.00 0.00 0.00 0.30 0.30 0.0 0.00 0.38 0.30 0.00 0.00 143 1 1453.0 1453.0 11 11-02 0
20 CH0100027403 92.00 0.33 0.90 0.61 0.02 8 1 0 0 22 31 0 1 522.00 63.00 0 0.00 1674.00 3205.00 0.00 130.00 0.30 0.30 0.0 0.00 0.30 0.30 0.00 0.30 63 1 1427.2 1427.2 11 11-02 0
22 CH0100027412 63.00 0.33 0.98 0.90 0.31 4 0 0 0 10 51 0 23 106.00 0.00 0 0.00 589.00 4028.00 0.00 2133.00 0.90 0.00 0.0 0.00 0.40 0.30 0.00 0.30 89 1 1411.7 1411.7 11 11-01 0
43 CH0100033346 47.32 0.98 0.93 0.58 0.01 1 7 0 0 34 21 0 1 12.55 288.00 0 0.00 1880.73 2254.38 0.00 25.63 15.00 3.00 0.0 0.00 0.50 0.30 0.00 0.50 65 1 1451.0 1451.0 4 04-01 0
44 CH0100034686 70.00 0.50 0.88 0.99 0.00 0 12 0 0 1 64 0 0 0.00 738.00 0 0.00 40.00 5479.00 0.00 0.00 0.00 0.50 0.0 0.00 0.50 0.50 0.00 0.00 77 1 0.0 0.0 12 12-01 1
45 CH0100034687 86.00 0.00 0.00 0.00 0.00 0 10 0 0 0 67 0 0 0.00 599.00 0 0.00 0.00 6411.00 0.00 0.00 0.00 0.50 0.0 0.00 0.00 0.50 0.00 0.00 77 1 1471.1 1471.1 12 12-01 1
46 CH0100035900 115.50 0.65 0.56 0.80 0.08 11 9 0 0 1 21 0 3 1055.00 1358.00 0 0.00 85.00 2730.00 0.00 436.00 0.70 0.50 0.0 0.00 0.80 0.50 0.00 0.50 46 1 1449.1 1449.1 6 06-01 0
49 CH0100035906 149.00 0.69 0.80 0.92 0.80 7 1 0 2 0 4 0 17 427.00 88.00 0 533.00 0.00 526.00 0.00 3664.00 0.70 0.50 0.0 0.50 0.00 0.75 0.00 0.65 31 1 1494.9 1494.9 6 06-05 0
50 CH0100035907 57.00 0.77 0.30 0.34 0.07 49 4 0 0 1 8 0 5 2706.00 293.00 0 0.00 107.00 885.00 0.00 295.00 1.00 0.50 0.0 0.00 0.80 0.65 0.00 0.65 67 1 1367.5 1367.5 6 06-06 0
52 CH0100037143 77.33 1.11 1.00 0.92 0.33 0 0 0 0 4 14 1 6 0.00 0.00 0 0.00 173.02 1808.87 48.80 906.75 0.00 0.00 0.0 0.00 0.38 0.30 0.30 0.32 25 1 1262.9 1262.9 4 04-05 0
53 CH0100037148 57.12 1.16 0.83 0.43 0.00 1 4 0 0 23 9 0 0 61.70 393.98 0 0.00 1433.18 736.85 0.00 0.00 0.20 0.65 0.0 0.00 0.50 0.50 0.00 0.00 37 1 1421.1 1421.1 4 04-01 0
54 CH0100037286 81.56 0.99 0.82 0.85 0.02 7 47 0 0 38 118 0 3 459.25 3630.23 0 0.00 2880.95 14996.50 0.00 434.13 1.00 2.70 0.0 0.00 0.30 0.30 0.00 0.30 214 1 1380.6 1380.6 4 04-02 0
55 CH0100037288 54.18 0.90 0.79 0.44 0.00 3 9 0 0 29 15 0 0 294.53 506.88 0 0.00 1901.33 1218.83 0.00 0.00 3.00 1.00 0.0 0.00 0.40 0.40 0.00 0.00 57 1 1423.2 1423.2 4 04-01 0
56 CH0100037289 121.22 1.34 0.59 0.89 0.00 4 24 0 0 4 41 0 0 737.63 3435.72 0 0.00 412.03 5453.83 0.00 0.00 0.50 0.85 0.0 0.00 0.42 0.50 0.00 0.00 74 1 1363.5 1363.5 4 04-02 0
57 CH0100037333 84.66 0.50 0.95 0.93 0.40 4 8 0 3 33 88 1 69 105.95 697.53 0 326.00 1386.90 10407.53 16.47 8218.93 8.50 2.50 0.0 0.50 0.40 0.35 0.50 0.30 206 1 1386.3 1386.3 4 04-05 0
59 CH0100037348 52.53 1.03 0.63 0.53 0.00 4 13 0 0 22 10 0 0 285.43 865.25 0 0.00 1183.58 762.15 0.00 0.00 2.50 3.00 0.0 0.00 0.38 0.32 0.00 0.00 49 1 1376.0 1376.0 4 04-01 0
63 CH0100037608 85.50 0.00 0.00 0.00 0.00 25 1 0 1 0 27 0 27 1558.00 55.00 0 65.00 0.00 3160.00 0.00 2985.00 0.80 0.60 0.0 0.60 0.00 0.50 0.00 0.50 82 1 1478.8 1478.8 6 06-04 1
67 CH0100037620 113.00 0.77 0.57 0.80 0.05 18 10 0 0 1 31 0 5 1515.00 1943.00 0 0.00 97.00 4066.00 0.00 361.00 1.00 0.58 0.0 0.00 0.70 0.70 0.00 0.60 65 1 1455.1 1455.1 6 06-01 0
70 CH0100037653 75.00 0.76 0.54 0.60 0.13 10 0 0 1 0 4 0 2 648.00 0.00 0 90.00 0.00 740.00 0.00 125.00 0.90 0.00 0.0 0.50 0.00 0.68 0.00 0.55 17 1 1172.4 1172.4 6 06-06 0
72 CN0100000057 106.00 0.00 0.00 0.00 0.00 92 78 0 0 48 102 0 0 9124.00 9259.00 0 0.00 4431.00 13842.00 0.00 0.00 0.60 0.50 0.0 0.00 0.40 0.30 0.00 0.00 322 1 1407.8 1407.8 5 05-02 0
73 CN0100000078 110.00 0.00 0.00 0.00 0.00 28 34 0 0 20 33 0 0 2935.00 4603.00 0 0.00 1741.00 4379.00 0.00 0.00 0.60 0.50 0.0 0.00 0.45 0.35 0.00 0.00 117 1 1390.1 1390.1 5 05-01 0
74 CN0100000115 100.00 0.58 0.42 0.72 0.00 16 25 0 0 12 20 0 0 1337.00 3410.00 0 0.00 991.00 2489.00 0.00 0.00 0.60 0.60 0.0 0.00 0.30 0.40 0.00 0.00 74 1 1377.0 1377.0 5 05-01 0
75 CN0100000175 90.00 0.58 0.66 0.71 0.00 6 7 0 0 7 13 0 0 413.00 925.00 0 0.00 698.00 1847.00 0.00 0.00 0.60 0.80 0.0 0.00 0.30 0.40 0.00 0.00 34 1 1312.2 1312.2 5 05-01 0
76 CN0100000176 95.00 0.00 0.00 0.00 0.00 18 8 0 0 3 19 0 0 1622.00 833.00 0 0.00 129.00 2601.00 0.00 0.00 0.65 0.65 0.0 0.00 3.30 0.30 0.00 0.00 48 1 1305.1 1305.1 5 05-01 0
77 CN0100000180 102.00 1.03 0.50 0.80 0.00 8 14 0 0 5 19 0 0 731.00 2323.00 0 0.00 482.00 2511.00 0.00 0.00 0.70 0.55 0.0 0.00 0.60 0.35 0.00 0.00 47 1 1387.8 1387.8 5 05-01 0
78 CN0100000191 105.00 0.63 0.43 0.66 0.00 29 28 0 0 15 25 0 0 2814.00 3705.00 0 0.00 1066.00 3734.00 0.00 0.00 0.60 0.80 0.0 0.00 0.35 0.30 0.00 0.00 99 1 1404.3 1404.3 5 05-01 0
79 CN0100000416 104.00 0.81 0.95 0.95 0.50 0 0 0 1 2 10 0 15 0.00 0.00 0 169.00 168.00 1601.00 0.00 1591.00 0.00 0.00 0.0 0.80 0.80 0.80 0.00 0.80 28 1 1487.1 1487.1 7 07-01 0
80 CN0100000738 112.00 0.72 1.00 0.92 0.50 0 0 0 0 3 9 0 12 0.00 0.00 0 0.00 241.00 1170.00 0.00 1426.00 0.00 0.00 0.0 0.00 0.80 0.80 0.00 0.80 24 1 1480.7 1480.7 7 07-01 0
81 CN0100000744 71.50 0.83 1.00 0.95 0.70 0 0 0 0 4 3 0 17 0.00 0.00 0 0.00 129.00 638.00 0.00 1786.00 0.00 0.00 0.0 0.00 0.80 0.80 0.00 0.80 24 1 1497.6 1497.6 7 07-01 0
82 CN0100000757 88.00 1.12 1.00 0.98 0.48 0 0 0 0 1 8 1 12 0.00 0.00 0 0.00 20.00 1340.00 40.00 1191.00 0.00 0.00 0.0 0.00 0.80 0.80 0.80 0.80 22 1 1493.3 1493.3 7 07-01 0
83 CN0100000760 97.00 0.84 0.92 0.91 0.39 0 1 0 0 4 9 0 9 0.00 213.00 0 0.00 227.00 1103.00 0.00 968.00 0.00 0.00 0.0 0.00 0.80 0.80 0.00 0.80 23 1 1484.7 1484.7 7 07-01 0
85 CN0100001611 92.00 0.00 0.00 0.00 0.00 14 24 0 0 20 18 0 0 1272.00 2594.00 0 0.00 1890.00 2086.00 0.00 0.00 0.70 0.70 0.0 0.00 0.28 0.30 0.00 0.00 76 1 1368.2 1368.2 5 05-01 0
86 CN0100001621 107.00 0.00 0.00 0.00 0.00 19 16 0 0 18 18 0 0 1681.00 1446.00 0 0.00 2043.00 2481.00 0.00 0.00 0.60 0.60 0.0 0.00 0.30 0.30 0.00 0.00 71 1 1377.8 1377.8 5 05-01 0
87 CN0100002233 61.00 0.00 0.00 0.00 0.00 25 2 0 0 38 7 0 0 1709.00 119.00 0 0.00 2234.00 376.00 0.00 0.00 0.50 0.55 0.0 0.00 0.72 0.80 0.00 0.00 72 1 1555.4 1555.4 1 01-02 1
88 CN0100002243 72.00 1.17 0.78 0.11 0.00 17 0 0 0 53 6 0 0 1333.00 0.00 0 0.00 3888.00 619.00 0.00 0.00 1.00 0.00 0.0 0.00 0.60 0.75 0.00 0.00 77 1 1533.6 1533.6 1 01-02 1
89 CN0100002245 62.00 0.00 0.00 0.00 0.00 14 3 0 0 79 6 0 0 903.00 301.00 0 0.00 4963.00 401.00 0.00 0.00 0.65 0.95 0.0 0.00 0.55 0.50 0.00 0.00 103 1 1538.4 1538.4 1 01-02 1
90 CN0100002251 52.50 0.00 0.00 0.00 0.00 7 1 0 0 58 6 0 0 424.00 53.00 0 0.00 3267.00 393.00 0.00 0.00 0.50 0.50 0.0 0.00 0.50 0.50 0.00 0.00 72 1 1520.5 1520.5 1 01-02 1
91 CN0100002596 88.00 0.75 0.86 0.96 0.55 1 3 0 1 1 8 0 16 36.00 279.00 0 80.00 74.03 898.00 0.00 1469.00 0.80 0.60 0.0 0.75 0.70 0.70 0.00 0.80 30 1 1483.6 1483.6 6 06-03 0
92 CN0100002597 102.00 0.78 0.63 0.75 0.04 9 5 0 0 1 22 0 3 1014.00 516.00 0 0.00 105.00 2631.00 0.00 171.00 1.00 0.40 0.0 0.00 1.00 0.70 0.00 0.50 42 1 1435.5 1435.5 6 06-01 0
93 CN0100002598 88.00 0.58 0.81 0.87 0.27 7 2 0 0 0 12 0 8 369.00 168.00 0 0.00 0.00 1516.00 0.00 753.00 0.70 0.50 0.0 0.00 0.00 0.55 0.00 0.50 29 1 1400.8 1400.8 6 06-04 1
94 CN0100002606 90.50 0.00 0.00 0.00 0.00 5 4 0 1 1 23 0 17 348.00 424.00 0 65.00 40.00 2662.00 0.00 1604.00 0.80 0.82 0.0 0.50 0.50 0.50 0.00 0.50 51 1 1483.0 1483.0 6 06-03 0
95 CN0100002607 77.00 0.69 0.81 0.89 0.39 8 2 0 0 0 11 0 16 392.00 265.00 0 0.00 0.00 1479.00 0.00 1363.00 1.00 1.80 0.0 0.00 0.00 0.40 0.00 0.65 37 1 1449.2 1449.2 6 06-02 0
96 CN0100002610 79.00 0.56 0.72 0.90 0.34 8 6 0 0 0 12 0 15 369.00 633.00 0 0.00 0.00 1353.00 0.00 1208.00 0.50 0.75 0.0 0.00 0.00 0.50 0.00 0.50 41 1 1381.2 1381.2 6 06-02 0
97 CN0100002611 95.00 0.62 0.73 0.86 0.34 7 1 0 0 0 9 0 10 384.00 360.00 0 0.00 0.00 1121.00 0.00 942.00 0.90 1.00 0.0 0.00 0.00 0.50 0.00 0.60 27 1 1326.5 1326.5 6 06-02 0
98 CN0100002612 55.50 0.82 0.32 0.31 0.07 83 1 0 0 3 13 0 4 4682.00 100.00 0 0.00 220.00 1592.00 0.00 484.00 1.00 0.50 0.0 0.00 0.80 0.50 0.00 0.50 104 1 1397.5 1397.5 6 06-06 0
99 CN0100002617 107.00 0.68 0.00 0.00 0.00 15 4 0 1 0 25 0 3 1293.00 580.00 0 67.00 0.00 3106.00 0.00 291.00 1.00 0.65 0.0 0.50 0.00 0.50 0.00 0.50 48 1 1491.6 1491.6 6 06-01 0
100 CN0100002618 167.50 0.55 0.95 0.96 0.86 4 1 0 0 0 4 0 19 162.00 45.00 0 0.00 0.00 429.00 0.00 3789.00 1.00 0.50 0.0 0.00 0.00 0.50 0.00 0.50 28 1 1431.5 1431.5 6 06-05 0
101 CN0100002623 150.00 0.58 0.88 0.90 0.74 8 1 0 0 1 2 0 18 400.00 125.00 0 0.00 40.00 515.00 0.00 3139.00 0.75 0.70 0.0 0.00 0.80 0.45 0.00 0.50 30 1 1465.1 1465.1 6 06-05 0
102 CN0100002660 120.00 0.00 0.00 0.00 0.00 19 13 0 0 3 10 0 0 1814.00 2040.00 0 0.00 266.00 1588.00 0.00 0.00 0.72 0.70 0.0 0.00 0.50 0.30 0.00 0.00 46 1 1333.7 1333.7 5 05-02 0
103 CN0100002788 117.00 0.54 0.48 0.77 0.00 19 29 0 0 10 33 0 0 1870.00 4050.00 0 0.00 802.00 4754.00 0.00 0.00 0.70 0.70 0.0 0.00 0.30 0.30 0.00 0.00 91 1 1403.4 1403.4 5 05-02 0
104 CN0100002796 112.50 0.53 0.00 0.00 0.00 18 19 0 0 15 17 0 0 1689.00 2814.00 0 0.00 1330.00 2417.00 0.00 0.00 0.60 0.50 0.0 0.00 0.30 0.25 0.00 0.00 71 1 1382.0 1382.0 5 05-02 0
105 CN0100003913 80.00 0.35 1.00 0.77 0.01 0 1 0 0 24 51 0 1 0.00 22.00 0 0.00 1673.00 5474.00 0.00 56.00 0.00 0.35 0.0 0.00 0.35 0.35 0.00 0.00 77 1 1481.0 1481.0 10 10-01 1
106 CN0100003919 70.00 0.35 1.00 1.00 0.39 0 0 0 0 0 11 0 6 0.00 0.00 0 0.00 0.00 820.00 0.00 526.00 0.00 0.00 0.0 0.00 0.00 0.35 0.00 0.35 17 1 1457.3 1457.3 10 10-02 1
107 CN0100003923 67.00 0.37 1.00 0.65 0.05 0 0 0 0 38 39 3 3 0.00 0.00 0 0.00 2059.00 3693.00 100.00 231.00 0.00 0.00 0.0 0.00 0.35 0.35 0.35 0.35 84 1 1473.3 1473.3 10 10-01 1
108 CN0100003924 78.00 0.35 1.00 0.90 0.34 0 0 0 0 13 41 0 23 0.00 0.00 0 0.00 647.00 3590.00 0.00 2153.00 0.00 0.00 0.0 0.00 0.35 0.35 0.00 0.35 77 1 1480.5 1480.5 10 10-02 1
109 CN0100003952 76.50 0.00 0.00 0.00 0.00 0 0 0 0 25 47 0 3 0.00 0.00 0 0.00 58.00 3449.00 0.00 206.00 0.00 0.00 0.0 0.00 0.35 0.35 0.00 0.35 77 1 1466.4 1466.4 10 10-01 1
110 CN0100003953 72.00 0.00 0.00 0.00 0.00 0 0 0 0 25 62 0 35 0.00 0.00 0 0.00 710.00 6059.00 0.00 3019.00 0.00 0.00 0.0 0.00 0.35 0.35 0.00 0.35 122 1 1463.4 1463.4 10 10-02 1
111 CN0100004959 74.00 0.35 1.00 0.89 0.02 0 0 0 0 5 21 0 1 0.00 0.00 0 0.00 244.00 1899.00 0.00 48.00 0.00 0.00 0.0 0.00 0.35 0.35 0.00 0.35 28 1 1203.5 1203.5 10 10-01 1
112 CN0100004970 69.00 0.00 0.00 0.00 0.00 0 0 0 0 7 30 0 25 0.00 0.00 0 0.00 339.00 2513.00 0.00 2103.00 0.00 0.00 0.0 0.00 0.35 0.35 0.00 0.35 62 1 1466.3 1466.3 10 10-02 1
113 CN0100005013 73.00 0.69 0.74 0.92 0.28 5 4 1 0 0 11 0 7 126.00 437.00 85 0.00 0.00 1237.00 0.00 621.00 1.00 0.60 0.5 0.00 0.00 0.70 0.00 0.60 28 1 1404.5 1404.5 6 06-02 0
114 CN0100005015 85.00 0.42 0.87 0.87 0.14 3 0 0 0 0 8 0 2 151.00 0.00 0 0.00 0.00 872.00 0.00 170.00 0.70 0.00 0.0 0.00 0.00 0.40 0.00 0.48 13 1 1213.3 1213.3 6 06-02 0
115 CN0100005019 60.00 0.77 0.30 0.33 0.12 96 3 0 1 0 14 0 7 5767.00 154.00 0 100.00 0.00 1606.00 0.00 982.00 0.90 0.50 0.0 0.50 0.00 0.55 0.00 0.40 123 1 1409.4 1409.4 6 06-06 0
116 CN0100005020 157.00 0.66 0.94 0.99 0.85 1 0 0 1 0 2 0 13 35.00 0.00 0 150.00 0.00 439.00 0.00 2468.00 1.60 0.00 0.0 0.80 0.00 0.60 0.00 0.70 17 1 1333.6 1333.6 6 06-05 0
117 CN0100005258 69.00 2.92 0.85 0.03 0.00 1 1 0 0 9 0 0 0 110.00 29.00 0 0.00 753.00 0.00 0.00 0.00 0.50 0.80 0.0 0.00 1.00 0.00 0.00 0.00 12 1 1531.0 1531.0 1 01-01 1
118 CN0100005259 59.00 0.00 0.00 0.00 0.00 2 0 0 0 42 2 0 0 120.00 0.00 0 0.00 2795.00 181.00 0.00 0.00 0.50 0.00 0.0 0.00 0.50 0.75 0.00 0.00 46 1 1536.3 1536.3 1 01-01 1
119 CN0100005260 57.00 0.00 0.00 0.00 0.00 10 2 0 0 37 4 0 0 499.00 154.00 0 0.00 2383.00 299.00 0.00 0.00 0.60 0.60 0.0 0.00 0.50 0.65 0.00 0.00 53 1 1515.0 1515.0 1 01-01 1
120 CN0100005261 67.00 0.00 0.00 0.00 0.00 7 0 0 0 32 6 0 0 544.00 0.00 0 0.00 1912.00 477.00 0.00 0.00 0.60 0.00 0.0 0.00 0.50 0.60 0.00 0.00 45 1 1440.4 1440.4 1 01-01 1
121 CN0100005280 59.00 0.64 0.86 0.16 0.00 5 1 0 0 39 6 0 0 342.00 84.00 0 0.00 2275.00 397.00 0.00 0.00 0.90 1.50 0.0 0.00 0.50 0.45 0.00 0.00 51 1 1483.1 1483.1 1 01-01 1
122 CN0100005281 70.00 0.60 0.80 0.09 0.00 8 2 0 0 31 2 0 0 561.00 143.00 0 0.00 2575.00 161.00 0.00 0.00 0.55 0.88 0.0 0.00 0.50 0.65 0.00 0.00 43 1 1512.9 1512.9 1 01-01 1
123 CN0100010502 60.50 0.85 0.33 0.35 0.10 61 2 0 0 0 13 0 6 3715.00 132.00 0 0.00 0.00 1279.00 0.00 601.00 1.00 0.70 0.0 0.00 0.00 0.50 0.00 0.65 82 1 1317.8 1317.8 6 06-06 0
124 CN0100010503 61.00 0.86 0.33 0.42 0.09 52 7 0 0 0 15 0 4 3049.00 504.00 0 0.00 0.00 1264.00 0.00 459.00 1.00 0.50 0.0 0.00 0.00 0.50 0.00 1.00 78 1 1358.1 1358.1 6 06-06 0
125 CN0100011408 63.00 0.53 0.82 1.00 0.00 0 17 0 0 0 76 0 0 0.00 1351.00 0 0.00 0.00 6241.00 0.00 0.00 0.00 0.50 0.0 0.00 0.00 0.50 0.00 0.00 93 1 0.0 0.0 12 12-01 1
126 CN0100011411 84.00 0.00 0.00 0.00 0.00 0 8 0 0 0 60 0 0 0.00 513.00 0 0.00 0.00 4922.00 0.00 0.00 0.00 0.50 0.0 0.00 0.00 0.50 0.00 0.00 68 1 0.0 0.0 12 12-01 1
128 CN0100011500 130.12 0.49 0.93 0.82 0.15 0 0 0 0 14 21 0 5 0.00 0.00 0 0.00 1052.27 3741.67 0.00 911.88 0.00 0.00 0.0 0.00 0.32 0.30 0.00 0.30 44 1 1440.3 1440.3 4 04-06 0
129 CN0100013261 64.50 0.89 0.00 0.00 0.00 90 5 0 0 0 14 0 6 5738.00 925.00 0 0.00 0.00 1611.00 0.00 389.00 1.00 0.55 0.0 0.00 0.00 0.65 0.00 0.60 117 1 1475.3 1475.3 6 06-06 0

Clustering

a <- scale(agcs[model_columns])
d <- dist(a, method = "euclidean")
clsize <- 80
agcs$cluster.nn.min <-
    fixed_size_clustering_nearest_neighbor(d, size = clsize, method = "min")
agcs$cluster.hc.wardD2 <-
    fixed_size_clustering_hclust(d, size = clsize, method = "ward.D2")
agcs$cluster.km.rst.rng <-
    fixed_size_clustering_kmeans(a, size = clsize, method = "range")
agcs$cluster.km.std <-
    kmeans(a, ceiling(nrow(a) / clsize))$cluster

write.csv(
    agcs,
    file = find_git_root_file(
        "export",
        paste0(format(Sys.Date(), "%Y%m%d"), "_agcs_per_cluster.csv")
    ),
    row.names = FALSE
)

cols <- viridisLite::viridis(max(agcs$cluster.nn.min))

library("pvclust")
pv <- pvclust(
    t(a), method.hclust = "ward.D2", method.dist = "euclidean",
    nboot = 100,
    quiet = TRUE
)
pvd <- as.dendrogram(pv)
par(mar = c(12, 2, 2, 1))
plot(pvd)
text(pv)
cls <- cbind(
    nn.min = agcs$cluster.nn.min,
    km.rst.rng = agcs$cluster.km.rst.rng,
    km.std = agcs$cluster.km.std,
    hc.wardD2 = agcs$cluster.hc.wardD2
)
cls[] <- cols[cls]
colored_bars(cls, pvd)
colored_bars(
    cbind(
        center = agcs$center,
        or.id = match(agcs$or, unique(agcs$or))
    ),
    pvd, y_shift = -4.5
)

wss <- sapply(
    list(
        nn.min = agcs$cluster.nn.min,
        km.rst.rng = agcs$cluster.km.rst.rng,
        km.std = agcs$cluster.km.std,
        hc.wardD2 = agcs$cluster.hc.wardD2
    ),
    within_cluster_sum_of_squares, x = a
)
tss <- total_sum_of_squares(a)

col <- seq_len(ncol(wss))
barplot(
    t(wss), col = col, beside = TRUE,
    main = "Within cluster sum of squares"
)
legend("topright", legend = colnames(wss), col = col, pch = 15)

barplot(
    1 - colSums(wss) / tss, col = col, horiz = TRUE,
    main = "Between/Total sum of squares"
)
legend(
    "bottomright",
    legend = colnames(wss),
    col = col, pch = 15,
    bty = "n"
)

Lineare Regression

Behalte nur Filter mit 80 Filtern pro Gruppe.

keep <-
    agcs$cluster.nn.min %in% which(table(agcs$cluster.nn.min) == clsize)
table(keep)
## keep
## FALSE  TRUE 
##     8    80
## 
## Call:
## lm(formula = weight ~ 0 + n.cases.lama.nonlap.tiva + n.cases.tube.nonlap.tiva + 
##     n.cases.tube.lap.tiva + n.cases.lama.nonlap.inha + n.cases.tube.nonlap.inha + 
##     n.cases.tube.lap.inha + sum.dura.lama.nonlap.tiva + sum.dura.tube.nonlap.tiva + 
##     sum.dura.tube.lap.tiva + sum.dura.lama.nonlap.inha + sum.dura.tube.nonlap.inha + 
##     sum.dura.tube.lap.inha + med.flow.lama.nonlap.tiva + med.flow.tube.nonlap.tiva + 
##     med.flow.tube.lap.tiva + med.flow.lama.nonlap.inha + med.flow.tube.nonlap.inha + 
##     med.flow.tube.lap.inha + water.trap, data = agcs[keep, ])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -770.13 -127.25   41.39  210.67  870.79 
## 
## Coefficients:
##                             Estimate Std. Error t value Pr(>|t|)   
## n.cases.lama.nonlap.tiva  -7.702e+00  1.881e+01  -0.410  0.68356   
## n.cases.tube.nonlap.tiva  -6.633e+01  2.115e+01  -3.137  0.00263 **
## n.cases.tube.lap.tiva      5.965e+02  6.407e+02   0.931  0.35550   
## n.cases.lama.nonlap.inha  -5.534e+00  1.111e+01  -0.498  0.62010   
## n.cases.tube.nonlap.inha   5.893e+00  9.080e+00   0.649  0.51879   
## n.cases.tube.lap.inha      8.950e+00  1.547e+01   0.579  0.56501   
## sum.dura.lama.nonlap.tiva  1.340e-01  3.112e-01   0.431  0.66816   
## sum.dura.tube.nonlap.tiva  5.607e-01  1.863e-01   3.009  0.00381 **
## sum.dura.tube.lap.tiva     1.077e-01  2.901e+00   0.037  0.97050   
## sum.dura.lama.nonlap.inha  2.817e-01  1.748e-01   1.611  0.11237   
## sum.dura.tube.nonlap.inha -7.355e-03  8.046e-02  -0.091  0.92747   
## sum.dura.tube.lap.inha     1.999e-02  1.362e-01   0.147  0.88375   
## med.flow.lama.nonlap.tiva  2.656e+02  1.121e+02   2.368  0.02107 * 
## med.flow.tube.nonlap.tiva  1.799e+02  1.186e+02   1.517  0.13455   
## med.flow.tube.lap.tiva    -1.084e+03  1.077e+03  -1.007  0.31780   
## med.flow.lama.nonlap.inha  3.739e+02  1.676e+02   2.231  0.02937 * 
## med.flow.tube.nonlap.inha  4.834e+02  2.998e+02   1.613  0.11200   
## med.flow.tube.lap.inha     8.984e+02  2.848e+02   3.155  0.00250 **
## water.trap                 2.485e+02  1.331e+02   1.867  0.06674 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 356.9 on 61 degrees of freedom
## Multiple R-squared:  0.9503, Adjusted R-squared:  0.9348 
## F-statistic: 61.39 on 19 and 61 DF,  p-value: < 2.2e-16

Penalized Regression

y <- agcs[keep, "weight"]

X <- model.matrix(
weight ~ 0 +
    n.cases.lama.nonlap.tiva +
    n.cases.tube.nonlap.tiva +
    n.cases.tube.lap.tiva +
    n.cases.lama.nonlap.inha +
    n.cases.tube.nonlap.inha +
    n.cases.tube.lap.inha +
    sum.dura.lama.nonlap.tiva +
    sum.dura.tube.nonlap.tiva +
    sum.dura.tube.lap.tiva +
    sum.dura.lama.nonlap.inha +
    sum.dura.tube.nonlap.inha +
    sum.dura.tube.lap.inha +
    med.flow.lama.nonlap.tiva +
    med.flow.tube.nonlap.tiva +
    med.flow.tube.lap.tiva +
    med.flow.lama.nonlap.inha +
    med.flow.tube.nonlap.inha +
    med.flow.tube.lap.inha +
    water.trap,
    data = agcs[keep, ]
)

## TODO: replace y with measured weight and drop `jitter` call (just used to
## avoid error about constant y)
#Y <- jitter(y)
Y <- y

## TODO: increase nrepcv and nfolds for final calculations
## number of repeated cv for model estimation
nrepcv <- 2
## number of cv folds for model estimation
nfolds <- 5
## number of repeated cv for mse estimation (authors of nested_cv suggest at
## least 50)
mse.nrepcv <- 5
## number of cv folds for mse estimation
mse.nfolds <- 5
## percentage of training data
ptrain <- 0.8

## helper functions
se_loss_rcv.glmnet <- function(y1, y2, funcs_params = NULL) {
    (y1 - y2)^2
}

fitter_rcv.glmnet <- function(X, Y, idx = seq_len(nrow(X)), funcs_params = NULL) {
    rcv.glmnet(
        X[idx, ], Y[idx],
        lambda = funcs_params$lambda,
        alpha = funcs_params$alpha,
        intercept = funcs_params$intercept,
        nfolds = funcs_params$nfolds,
        nrepcv = funcs_params$nrepcv
    )
}

predictor_rcv.glmnet <- function(fit, X_new, funcs_params = NULL) {
    predict(fit, X_new, s = funcs_params$s)
}

funcs_rcv.glmnet <- list(
    fitter = fitter_rcv.glmnet,
    predictor = predictor_rcv.glmnet,
    loss = se_loss_rcv.glmnet
)

params <- list(
    alpha = 1,
    s = "lambda.1se",
    intercept = FALSE,
    nfolds = nfolds,
    nrepcv = nrepcv
)

set.seed(1)
nr <- nrow(X)
ntrain <- ceiling(nr * ptrain)
train_idx <- sample(seq_len(nr), ntrain, replace = FALSE)
test_idx <- setdiff(seq_len(nr), train_idx)
X_train <- X[train_idx, ]
Y_train <- Y[train_idx]

## fit once to keep lambda/best lambda fixed
fit <- funcs_rcv.glmnet$fitter(X_train, Y_train, funcs_params = params)
params$lambda <- fit$lambda
params$lambda.min <- fit$lambda.min

out <- nested_cv(
    X_train, Y_train,
    funcs = funcs_rcv.glmnet,
    n_folds = mse.nfolds,
    reps = mse.nrepcv,
    n_cores = parallel::detectCores(),
    funcs_params = params,
    alpha = 0.05
)
out[["ho_err"]] <- mean(funcs_rcv.glmnet$loss(
    funcs_rcv.glmnet$predictor(fit, X[test_idx, ], funcs_params = params),
    Y[test_idx],
    funcs_params = params
))
out
## $sd_infl
## [1] 1.955672
## 
## $err_hat
## [1] 171072.8
## 
## $ci_lo
## [1] -16498.46
## 
## $ci_hi
## [1] 358644
## 
## $raw_mean
## [1] 252121.1
## 
## $bias_est
## [1] 81048.3
## 
## $sd
## [1] 391482.4
## 
## $running_sd_infl
## [1] 1.722672 1.335926 1.543523 1.578283 1.955672
## 
## $ho_err
## [1] 221765.6
# RMSE
sqrt(c(out$err_hat, out$ho_err))
## [1] 413.6095 470.9200
knitr::kable(
    cbind(
        as.matrix(coef(fit, s = "lambda.1se")),
        as.matrix(coef(fit, s = "lambda.min"))[, 1]
    ),
    col.names = c("variable", "s, lambda.1se", "s, lambda.min")
)
variable s, lambda.1se s, lambda.min
(Intercept) 0.0000000 0.0000000
n.cases.lama.nonlap.tiva 0.0000000 0.0000000
n.cases.tube.nonlap.tiva 0.0000000 -53.7992204
n.cases.tube.lap.tiva 0.0000000 81.0423025
n.cases.lama.nonlap.inha 0.0000000 -1.1874496
n.cases.tube.nonlap.inha 0.0000000 1.0580854
n.cases.tube.lap.inha 13.0482228 14.8578266
sum.dura.lama.nonlap.tiva 0.0232925 0.0144212
sum.dura.tube.nonlap.tiva 0.0276881 0.5317458
sum.dura.tube.lap.tiva 0.0000000 -0.5383752
sum.dura.lama.nonlap.inha 0.1639116 0.3264877
sum.dura.tube.nonlap.inha 0.0133769 0.0000000
sum.dura.tube.lap.inha 0.0000000 0.0000000
med.flow.lama.nonlap.tiva 227.3882037 294.3472264
med.flow.tube.nonlap.tiva 0.0000000 114.9042264
med.flow.tube.lap.tiva 0.0000000 -186.9612930
med.flow.lama.nonlap.inha 453.6151844 452.7160133
med.flow.tube.nonlap.inha 1089.9039942 0.0000000
med.flow.tube.lap.inha 318.1987866 1215.0468646
water.trap 0.0000000 254.9845575
plot(fit)

plot(fit, "path")