Letzte Aktualisierung: 2024-12-01 15:12:40

Gesamtübersicht

Übersicht über CONTRAfluran-Filter

median.duration mean.flow mean.balanced.anaesthesia mean.airway mean.laparoscopic n.cases.lama.nonlap.tiva n.cases.tube.nonlap.tiva n.cases.lama.lap.tiva n.cases.tube.lap.tiva n.cases.lama.nonlap.inha n.cases.tube.nonlap.inha n.cases.lama.lap.inha n.cases.tube.lap.inha sum.dura.lama.nonlap.tiva sum.dura.tube.nonlap.tiva sum.dura.lama.lap.tiva sum.dura.tube.lap.tiva sum.dura.lama.nonlap.inha sum.dura.tube.nonlap.inha sum.dura.lama.lap.inha sum.dura.tube.lap.inha med.flow.lama.nonlap.tiva med.flow.tube.nonlap.tiva med.flow.lama.lap.tiva med.flow.tube.lap.tiva med.flow.lama.nonlap.inha med.flow.tube.nonlap.inha med.flow.lama.lap.inha med.flow.tube.lap.inha ncases weight agc.id center or
CH0100010089 90.00 0.00 0.00 0.00 0.00 2 11 0 35 5 6 0 17 148.00 1583.00 0 3298.00 155.00 570.00 0.00 1562.00 6.00 7.50 0.0 6.00 0.50 1.00 0.00 0.50 76 400 CH0100010089 13 13-01
CH0100011411 84.00 0.00 0.00 0.00 0.00 0 8 0 0 0 59 0 0 0.00 513.00 0 0.00 0.00 4922.00 0.00 0.00 0.00 0.50 0.0 0.00 0.00 0.50 0.00 0.00 67 400 CH0100011411 12 12-01
CH0100018639 48.50 1.03 0.00 0.00 0.00 0 0 0 0 10 0 0 1 0.00 0.00 0 0.00 439.00 0.00 0.00 120.00 0.00 0.00 0.0 0.00 1.00 0.00 0.00 0.50 12 400 CH0100018639 9 09-03
CH0100022340 97.22 0.68 0.98 0.84 0.14 0 0 0 0 47 99 3 18 0.00 0.00 0 0.00 3075.32 14500.72 132.83 2737.72 0.00 0.00 0.0 0.00 0.35 0.30 0.50 0.32 171 400 CH0100022340 4 04-06
CH0100022358 87.60 0.51 0.98 0.95 0.32 0 0 0 1 4 24 2 14 0.00 0.00 0 98.77 157.95 3419.03 97.58 1486.18 0.00 0.00 0.0 3.00 0.50 0.38 0.52 0.30 46 400 CH0100022358 4 04-05
CH0100022359 47.85 1.95 0.74 0.57 0.00 2 8 0 0 19 11 0 0 165.33 461.93 0 0.00 856.65 904.28 0.00 0.00 3.00 3.00 0.0 0.00 0.50 0.35 0.00 0.00 40 400 CH0100022359 4 04-01
CH0100022374 140.29 0.48 0.94 0.99 0.01 0 7 0 0 3 201 0 1 0.00 1996.65 0 0.00 180.68 31157.87 0.00 270.90 0.00 0.55 0.0 0.00 0.30 0.35 0.00 0.25 212 400 CH0100022374 4 04-03
CH0100022440 111.97 0.46 0.63 0.72 0.00 3 3 0 0 3 10 0 0 359.13 455.38 0 0.00 288.18 1207.27 0.00 0.00 0.50 0.35 0.0 0.00 0.30 0.30 0.00 0.00 20 400 CH0100022440 4 04-02
CH0100022449 273.62 0.51 1.00 0.99 0.86 0 1 0 0 5 10 0 99 0.00 92.27 0 0.00 303.63 4424.45 0.00 29567.20 0.00 3.30 0.0 0.00 0.45 0.32 0.00 0.30 115 400 CH0100022449 4 04-04
CH0100022685 63.00 0.35 0.95 0.91 0.32 5 1 0 0 11 50 0 26 220.00 39.00 0 0.00 411.00 3900.00 0.00 2177.00 0.50 0.30 0.0 0.00 0.40 0.30 0.00 0.30 95 400 CH0100022685 11 11-01
CH0100022762 85.50 0.34 0.88 0.78 0.02 11 1 0 0 9 41 0 2 744.00 23.00 0 0.00 596.00 4681.00 0.00 153.00 0.30 1.00 0.0 0.00 0.30 0.30 0.00 0.30 64 400 CH0100022762 11 11-02
CH0100026809 62.00 0.00 0.00 0.00 0.00 2 1 0 0 9 44 0 11 57.00 44.00 0 0.00 227.00 4155.00 0.00 1051.00 0.30 0.35 0.0 0.00 0.30 0.30 0.00 0.30 69 400 CH0100026809 11 11-01
CH0100027236 50.00 0.00 0.00 0.00 0.00 9 0 0 0 13 7 0 1 344.00 0.00 0 0.00 684.00 854.00 0.00 105.00 0.50 0.00 0.0 0.00 0.50 0.40 0.00 0.00 31 400 CH0100027236 9 09-03
CH0100027240 84.00 0.00 0.00 0.00 0.00 0 2 0 1 3 18 0 50 0.00 253.00 0 207.00 238.00 1338.00 0.00 5224.00 0.00 0.55 0.0 0.50 0.40 0.40 0.00 0.40 75 400 CH0100027240 9 09-02
CH0100027253 95.00 0.33 0.92 0.84 0.03 9 0 0 0 8 50 0 2 581.00 0.00 0 0.00 575.00 5829.00 0.00 204.00 0.30 0.00 0.0 0.00 0.38 0.30 0.00 0.55 69 400 CH0100027253 11 11-02
CH0100027255 61.00 0.32 0.99 0.86 0.38 1 0 0 0 15 32 0 25 28.00 0.00 0 0.00 696.00 2411.00 0.00 1942.00 0.30 0.00 0.0 0.00 0.35 0.30 0.00 0.30 73 400 CH0100027255 11 11-01
CH0100027395 62.00 0.32 1.00 0.85 0.39 1 0 0 0 8 16 0 13 14.00 0.00 0 0.00 440.00 1367.00 0.00 1157.00 0.50 0.00 0.0 0.00 0.30 0.30 0.00 0.30 38 400 CH0100027395 11 11-01
CH0100027397 95.00 0.34 0.94 0.75 0.00 13 3 0 0 34 93 0 0 643.00 230.00 0 0.00 2792.00 10263.00 0.00 0.00 0.30 0.30 0.0 0.00 0.38 0.30 0.00 0.00 143 400 CH0100027397 11 11-02
CH0100027403 92.00 0.33 0.90 0.61 0.02 8 1 0 0 22 31 0 1 522.00 63.00 0 0.00 1674.00 3205.00 0.00 130.00 0.30 0.30 0.0 0.00 0.30 0.30 0.00 0.30 63 400 CH0100027403 11 11-02
CH0100027409 75.00 0.69 0.00 0.52 0.00 2 4 0 0 6 2 0 1 204.00 288.00 0 0.00 434.00 304.00 0.00 93.00 0.60 0.50 0.0 0.00 0.75 0.65 0.00 0.50 16 400 CH0100027409 9 09-03
CH0100027412 63.00 0.33 0.98 0.90 0.31 4 0 0 0 10 51 0 23 106.00 0.00 0 0.00 589.00 4028.00 0.00 2133.00 0.90 0.00 0.0 0.00 0.40 0.30 0.00 0.30 89 400 CH0100027412 11 11-01
CH0100027432 130.00 0.00 0.00 0.00 0.00 2 1 0 1 4 16 0 0 70.00 98.00 0 75.00 548.00 2064.00 0.00 0.00 0.70 1.00 0.0 0.50 0.65 0.50 0.00 0.00 24 400 CH0100027432 9 09-01
CH0100027971 82.50 0.00 0.00 0.00 0.00 0 3 0 2 7 32 0 42 0.00 149.00 0 138.00 309.00 2869.00 0.00 3864.00 0.00 0.70 0.0 0.55 0.50 0.40 0.00 0.40 86 400 CH0100027971 9 09-02
CH0100027976 77.50 0.00 0.00 0.00 0.00 2 1 0 0 3 3 0 15 0.00 75.00 0 0.00 155.00 319.00 0.00 1279.00 0.00 0.20 0.0 0.00 0.80 0.50 0.00 0.40 24 400 CH0100027976 9 09-02
CH0100027997 68.50 0.53 0.76 0.68 0.00 1 0 0 0 2 4 0 0 142.00 0.00 0 0.00 38.00 382.00 0.00 0.00 0.50 0.00 0.0 0.00 0.35 0.50 0.00 0.00 8 400 CH0100027997 9 09-03
CH0100027998 138.00 0.00 0.00 0.00 0.00 0 6 0 0 5 20 0 0 0.00 730.00 0 0.00 501.00 2841.00 0.00 0.00 0.00 0.50 0.0 0.00 0.45 0.50 0.00 0.00 32 400 CH0100027998 9 09-01
CH0100028113 66.00 0.00 0.00 0.00 0.00 0 0 0 0 19 7 0 2 0.00 0.00 0 0.00 1095.00 601.00 0.00 140.00 0.00 0.00 0.0 0.00 0.50 0.50 0.00 0.45 28 400 CH0100028113 9 09-03
CH0100028371 114.00 0.00 0.00 0.00 0.00 1 1 0 0 1 10 0 2 0.00 294.00 0 0.00 58.00 1413.00 0.00 148.00 0.50 0.50 0.0 0.00 0.30 0.40 0.00 0.45 15 400 CH0100028371 9 09-01
CH0100028620 59.00 0.00 0.00 0.00 0.00 2 1 0 0 5 1 0 4 80.00 0.00 0 0.00 185.00 137.00 0.00 334.00 0.40 1.00 0.0 0.00 0.35 0.50 0.00 0.30 15 400 CH0100028620 9 09-03
CH0100030917 61.00 0.00 0.00 0.00 0.00 3 1 0 0 17 6 0 3 155.00 0.00 0 0.00 844.00 540.00 0.00 419.00 8.00 0.60 0.0 0.00 0.50 0.55 0.00 0.35 33 400 CH0100030917 9 09-03
CH0100031555 164.00 0.68 0.85 0.85 0.00 3 2 0 0 3 19 0 0 358.00 287.00 0 0.00 296.00 3457.00 0.00 0.00 0.50 0.75 0.0 0.00 0.75 0.55 0.00 0.00 28 400 CH0100031555 3 03-01
CH0100033001 181.00 0.67 0.71 0.80 0.00 4 8 0 0 6 27 0 0 630.00 1817.00 0 0.00 1036.00 5037.00 0.00 0.00 0.50 0.55 0.0 0.00 0.80 0.50 0.00 0.00 45 400 CH0100033001 3 03-01
CH0100033346 47.32 0.98 0.93 0.58 0.01 1 7 0 0 34 21 0 1 12.55 288.00 0 0.00 1880.73 2254.38 0.00 25.63 15.00 3.00 0.0 0.00 0.50 0.30 0.00 0.50 65 400 CH0100033346 4 04-01
CH0100034686 70.00 0.50 0.88 0.99 0.00 0 12 0 0 1 64 0 0 0.00 738.00 0 0.00 40.00 5479.00 0.00 0.00 0.00 0.50 0.0 0.00 0.50 0.50 0.00 0.00 77 400 CH0100034686 12 12-01
CH0100034687 86.00 0.00 0.00 0.00 0.00 0 10 0 0 0 67 0 0 0.00 599.00 0 0.00 0.00 6411.00 0.00 0.00 0.00 0.50 0.0 0.00 0.00 0.50 0.00 0.00 77 400 CH0100034687 12 12-01
CH0100035900 115.50 0.65 0.56 0.80 0.08 11 9 0 0 1 21 0 3 1055.00 1358.00 0 0.00 85.00 2730.00 0.00 436.00 0.70 0.50 0.0 0.00 0.80 0.50 0.00 0.50 46 400 CH0100035900 6 06-01
CH0100035902 95.00 0.64 0.87 0.89 0.36 4 3 0 0 2 18 0 20 385.00 302.00 0 0.00 208.00 2494.00 0.00 1897.00 1.30 0.65 0.0 0.00 1.05 0.60 0.00 0.60 47 400 CH0100035902 6 06-04
CH0100035903 85.00 0.67 0.83 0.97 0.25 4 1 1 2 0 17 0 6 89.00 185.00 18 242.00 0.00 2070.00 0.00 533.00 0.80 0.50 1.0 0.55 0.00 0.75 0.00 0.50 31 400 CH0100035903 6 06-02
CH0100035906 149.00 0.69 0.80 0.92 0.80 7 1 0 2 0 4 0 17 427.00 88.00 0 533.00 0.00 526.00 0.00 3664.00 0.70 0.50 0.0 0.50 0.00 0.75 0.00 0.65 31 400 CH0100035906 6 06-05
CH0100035907 57.00 0.77 0.30 0.34 0.07 49 4 0 0 1 8 0 5 2706.00 293.00 0 0.00 107.00 885.00 0.00 295.00 1.00 0.50 0.0 0.00 0.80 0.65 0.00 0.65 67 400 CH0100035907 6 06-06
CH0100035992 97.00 0.00 0.00 0.00 0.00 6 2 0 2 0 19 0 19 474.00 293.00 0 110.00 0.00 2640.00 0.00 1819.00 0.75 0.70 0.0 0.40 0.00 0.60 0.00 0.70 48 400 CH0100035992 6 06-03
CH0100037143 77.33 1.11 1.00 0.92 0.33 0 0 0 0 4 14 1 6 0.00 0.00 0 0.00 173.02 1808.87 48.80 906.75 0.00 0.00 0.0 0.00 0.38 0.30 0.30 0.32 25 400 CH0100037143 4 04-05
CH0100037148 57.12 1.16 0.83 0.43 0.00 1 4 0 0 23 9 0 0 61.70 393.98 0 0.00 1433.18 736.85 0.00 0.00 0.20 0.65 0.0 0.00 0.50 0.50 0.00 0.00 37 400 CH0100037148 4 04-01
CH0100037286 85.42 1.02 0.81 0.87 0.00 6 40 0 0 28 101 0 0 408.05 3135.60 0 0.00 2144.35 13290.15 0.00 0.00 1.00 1.90 0.0 0.00 0.40 0.30 0.00 0.00 176 400 CH0100037286 4 04-02
CH0100037288 54.18 0.90 0.79 0.44 0.00 3 9 0 0 29 15 0 0 294.53 506.88 0 0.00 1901.33 1218.83 0.00 0.00 3.00 1.00 0.0 0.00 0.40 0.40 0.00 0.00 57 400 CH0100037288 4 04-01
CH0100037289 121.22 1.34 0.59 0.89 0.00 4 24 0 0 4 41 0 0 737.63 3435.72 0 0.00 412.03 5453.83 0.00 0.00 0.50 0.85 0.0 0.00 0.42 0.50 0.00 0.00 74 400 CH0100037289 4 04-02
CH0100037333 84.66 0.50 0.95 0.93 0.40 4 8 0 3 33 88 1 69 105.95 697.53 0 326.00 1386.90 10407.53 16.47 8218.93 8.50 2.50 0.0 0.50 0.40 0.35 0.50 0.30 206 400 CH0100037333 4 04-05
CH0100037345 162.02 0.35 1.00 0.96 0.00 0 0 0 0 1 5 0 0 0.00 0.00 0 0.00 38.70 943.07 0.00 0.00 0.00 0.00 0.0 0.00 0.40 0.30 0.00 0.00 6 400 CH0100037345 4 04-06
CH0100037348 52.53 1.03 0.63 0.53 0.00 4 13 0 0 22 10 0 0 285.43 865.25 0 0.00 1183.58 762.15 0.00 0.00 2.50 3.00 0.0 0.00 0.38 0.32 0.00 0.00 49 400 CH0100037348 4 04-01
CH0100037601 83.50 0.67 0.63 0.82 0.49 11 3 0 3 0 6 0 17 655.00 492.00 0 215.00 0.00 738.00 0.00 1589.00 1.00 0.80 0.0 0.20 0.00 0.68 0.00 0.60 40 400 CH0100037601 6 06-02
CH0100037602 85.00 0.75 0.71 0.83 0.40 7 1 0 3 0 6 0 8 424.00 44.00 0 263.00 0.00 1027.00 0.00 729.00 1.00 0.60 0.0 0.70 0.00 0.62 0.00 0.55 25 400 CH0100037602 6 06-03
CH0100037605 131.00 0.60 0.87 0.91 0.73 6 1 0 1 0 4 0 15 365.00 40.00 0 130.00 0.00 690.00 0.00 2782.00 0.50 2.50 0.0 0.40 0.00 0.60 0.00 0.60 27 400 CH0100037605 6 06-05
CH0100037608 85.50 0.00 0.00 0.00 0.00 25 1 0 1 0 27 0 27 1558.00 55.00 0 65.00 0.00 3160.00 0.00 2985.00 0.80 0.60 0.0 0.60 0.00 0.50 0.00 0.50 82 400 CH0100037608 6 06-04
CH0100037609 82.00 0.68 0.92 0.99 0.14 1 1 0 0 0 16 0 5 15.00 125.00 0 0.00 0.00 1444.00 0.00 253.00 2.00 1.00 0.0 0.00 0.00 0.62 0.00 0.50 23 400 CH0100037609 6 06-02
CH0100037611 55.00 0.00 0.00 0.00 0.00 75 3 0 0 1 14 0 9 3969.00 214.00 0 0.00 45.00 1873.00 0.00 1027.00 1.00 0.70 0.0 0.00 2.00 0.55 0.00 0.50 103 400 CH0100037611 6 06-06
CH0100037619 83.00 0.75 0.89 0.89 0.46 2 0 0 0 0 6 0 9 154.00 0.00 0 0.00 0.00 627.00 0.00 677.00 1.70 0.00 0.0 0.00 0.00 0.65 0.00 0.50 17 400 CH0100037619 6 06-03
CH0100037620 113.00 0.77 0.57 0.80 0.05 18 10 0 0 1 31 0 5 1515.00 1943.00 0 0.00 97.00 4066.00 0.00 361.00 1.00 0.58 0.0 0.00 0.70 0.70 0.00 0.60 65 400 CH0100037620 6 06-01
CH0100037621 97.00 0.59 0.99 0.98 0.55 0 1 0 0 1 14 0 23 0.00 63.00 0 0.00 104.00 1747.00 0.00 2358.00 0.00 0.70 0.0 0.00 0.60 0.60 0.00 0.60 39 400 CH0100037621 6 06-04
CH0100037626 107.50 0.76 0.55 0.76 0.06 10 7 0 1 1 19 0 1 1063.00 825.00 0 196.00 94.00 2492.00 0.00 82.00 0.90 0.70 0.0 0.60 1.00 0.70 0.00 0.50 40 400 CH0100037626 6 06-01
CH0100037653 75.00 0.76 0.54 0.60 0.13 10 0 0 1 0 4 0 2 648.00 0.00 0 90.00 0.00 740.00 0.00 125.00 0.90 0.00 0.0 0.50 0.00 0.68 0.00 0.55 17 400 CH0100037653 6 06-06
CH0100037655 136.00 0.57 0.97 0.97 0.97 1 0 0 0 0 0 0 6 30.00 0.00 0 0.00 0.00 0.00 0.00 1103.00 0.60 0.00 0.0 0.00 0.00 0.00 0.00 0.50 7 400 CH0100037655 6 06-05
CN0100000057 109.00 0.00 0.00 0.00 0.00 34 34 0 0 13 23 0 0 3257.00 4055.00 0 0.00 1120.00 3116.00 0.00 0.00 0.55 0.50 0.0 0.00 0.40 0.30 0.00 0.00 104 400 CN0100000057 5 05-02
CN0100000078 110.00 0.00 0.00 0.00 0.00 28 34 0 0 20 33 0 0 2935.00 4603.00 0 0.00 1741.00 4379.00 0.00 0.00 0.60 0.50 0.0 0.00 0.45 0.35 0.00 0.00 117 400 CN0100000078 5 05-01
CN0100000092 127.00 0.80 1.00 1.00 0.67 0 0 0 0 0 3 0 4 0.00 0.00 0 0.00 0.00 323.00 0.00 646.00 0.00 0.00 0.0 0.00 0.00 0.80 0.00 0.80 7 400 CN0100000092 7 07-01
CN0100000115 100.00 0.58 0.42 0.72 0.00 16 25 0 0 12 20 0 0 1337.00 3410.00 0 0.00 991.00 2489.00 0.00 0.00 0.60 0.60 0.0 0.00 0.30 0.40 0.00 0.00 74 400 CN0100000115 5 05-01
CN0100000175 90.00 0.58 0.66 0.71 0.00 6 7 0 0 7 13 0 0 413.00 925.00 0 0.00 698.00 1847.00 0.00 0.00 0.60 0.80 0.0 0.00 0.30 0.40 0.00 0.00 34 400 CN0100000175 5 05-01
CN0100000176 95.00 0.00 0.00 0.00 0.00 18 8 0 0 3 19 0 0 1622.00 833.00 0 0.00 129.00 2601.00 0.00 0.00 0.65 0.65 0.0 0.00 3.30 0.30 0.00 0.00 48 400 CN0100000176 5 05-01
CN0100000180 102.00 1.03 0.50 0.80 0.00 8 14 0 0 5 19 0 0 731.00 2323.00 0 0.00 482.00 2511.00 0.00 0.00 0.70 0.55 0.0 0.00 0.60 0.35 0.00 0.00 47 400 CN0100000180 5 05-01
CN0100000191 105.00 0.63 0.43 0.66 0.00 29 28 0 0 15 25 0 0 2814.00 3705.00 0 0.00 1066.00 3734.00 0.00 0.00 0.60 0.80 0.0 0.00 0.35 0.30 0.00 0.00 99 400 CN0100000191 5 05-01
CN0100000416 104.00 0.81 0.95 0.95 0.50 0 0 0 1 2 10 0 15 0.00 0.00 0 169.00 168.00 1601.00 0.00 1591.00 0.00 0.00 0.0 0.80 0.80 0.80 0.00 0.80 28 400 CN0100000416 7 07-01
CN0100000738 112.00 0.72 1.00 0.92 0.50 0 0 0 0 3 9 0 12 0.00 0.00 0 0.00 241.00 1170.00 0.00 1426.00 0.00 0.00 0.0 0.00 0.80 0.80 0.00 0.80 24 400 CN0100000738 7 07-01
CN0100000744 71.50 0.83 1.00 0.95 0.70 0 0 0 0 4 3 0 17 0.00 0.00 0 0.00 129.00 638.00 0.00 1786.00 0.00 0.00 0.0 0.00 0.80 0.80 0.00 0.80 24 400 CN0100000744 7 07-01
CN0100000757 88.00 1.12 1.00 0.98 0.48 0 0 0 0 1 8 1 12 0.00 0.00 0 0.00 20.00 1340.00 40.00 1191.00 0.00 0.00 0.0 0.00 0.80 0.80 0.80 0.80 22 400 CN0100000757 7 07-01
CN0100000760 97.00 0.84 0.92 0.91 0.39 0 1 0 0 4 9 0 9 0.00 213.00 0 0.00 227.00 1103.00 0.00 968.00 0.00 0.00 0.0 0.00 0.80 0.80 0.00 0.80 23 400 CN0100000760 7 07-01
CN0100001611 92.00 0.00 0.00 0.00 0.00 14 24 0 0 20 18 0 0 1272.00 2594.00 0 0.00 1890.00 2086.00 0.00 0.00 0.70 0.70 0.0 0.00 0.28 0.30 0.00 0.00 76 400 CN0100001611 5 05-01
CN0100001621 107.00 0.00 0.00 0.00 0.00 19 16 0 0 18 18 0 0 1681.00 1446.00 0 0.00 2043.00 2481.00 0.00 0.00 0.60 0.60 0.0 0.00 0.30 0.30 0.00 0.00 71 400 CN0100001621 5 05-01
CN0100002233 61.00 0.00 0.00 0.00 0.00 25 2 0 0 38 7 0 0 1709.00 119.00 0 0.00 2234.00 376.00 0.00 0.00 0.50 0.55 0.0 0.00 0.72 0.80 0.00 0.00 72 400 CN0100002233 1 01-02
CN0100002243 72.00 1.17 0.78 0.11 0.00 17 0 0 0 53 6 0 0 1333.00 0.00 0 0.00 3888.00 619.00 0.00 0.00 1.00 0.00 0.0 0.00 0.60 0.75 0.00 0.00 77 400 CN0100002243 1 01-02
CN0100002245 62.00 0.00 0.00 0.00 0.00 14 3 0 0 79 6 0 0 903.00 301.00 0 0.00 4963.00 401.00 0.00 0.00 0.65 0.95 0.0 0.00 0.55 0.50 0.00 0.00 103 400 CN0100002245 1 01-02
CN0100002251 52.50 0.00 0.00 0.00 0.00 7 1 0 0 58 6 0 0 424.00 53.00 0 0.00 3267.00 393.00 0.00 0.00 0.50 0.50 0.0 0.00 0.50 0.50 0.00 0.00 72 400 CN0100002251 1 01-02
CN0100002596 88.00 0.75 0.86 0.96 0.55 1 3 0 1 1 8 0 16 36.00 279.00 0 80.00 74.03 898.00 0.00 1469.00 0.80 0.60 0.0 0.75 0.70 0.70 0.00 0.80 30 400 CN0100002596 6 06-03
CN0100002597 102.00 0.78 0.63 0.75 0.04 9 5 0 0 1 22 0 3 1014.00 516.00 0 0.00 105.00 2631.00 0.00 171.00 1.00 0.40 0.0 0.00 1.00 0.70 0.00 0.50 42 400 CN0100002597 6 06-01
CN0100002598 88.00 0.58 0.81 0.87 0.27 7 2 0 0 0 12 0 8 369.00 168.00 0 0.00 0.00 1516.00 0.00 753.00 0.70 0.50 0.0 0.00 0.00 0.55 0.00 0.50 29 400 CN0100002598 6 06-04
CN0100002606 90.50 0.00 0.00 0.00 0.00 5 4 0 1 1 23 0 17 348.00 424.00 0 65.00 40.00 2662.00 0.00 1604.00 0.80 0.82 0.0 0.50 0.50 0.50 0.00 0.50 51 400 CN0100002606 6 06-03
CN0100002607 77.00 0.69 0.81 0.89 0.39 8 2 0 0 0 11 0 16 392.00 265.00 0 0.00 0.00 1479.00 0.00 1363.00 1.00 1.80 0.0 0.00 0.00 0.40 0.00 0.65 37 400 CN0100002607 6 06-02
CN0100002610 79.00 0.56 0.72 0.90 0.34 8 6 0 0 0 12 0 15 369.00 633.00 0 0.00 0.00 1353.00 0.00 1208.00 0.50 0.75 0.0 0.00 0.00 0.50 0.00 0.50 41 400 CN0100002610 6 06-02
CN0100002611 95.00 0.62 0.73 0.86 0.34 7 1 0 0 0 9 0 10 384.00 360.00 0 0.00 0.00 1121.00 0.00 942.00 0.90 1.00 0.0 0.00 0.00 0.50 0.00 0.60 27 400 CN0100002611 6 06-02
CN0100002612 55.50 0.82 0.32 0.31 0.07 83 1 0 0 3 13 0 4 4682.00 100.00 0 0.00 220.00 1592.00 0.00 484.00 1.00 0.50 0.0 0.00 0.80 0.50 0.00 0.50 104 400 CN0100002612 6 06-06
CN0100002617 107.00 0.68 0.00 0.00 0.00 15 4 0 1 0 25 0 3 1293.00 580.00 0 67.00 0.00 3106.00 0.00 291.00 1.00 0.65 0.0 0.50 0.00 0.50 0.00 0.50 48 400 CN0100002617 6 06-01
CN0100002618 167.50 0.55 0.95 0.96 0.86 4 1 0 0 0 4 0 19 162.00 45.00 0 0.00 0.00 429.00 0.00 3789.00 1.00 0.50 0.0 0.00 0.00 0.50 0.00 0.50 28 400 CN0100002618 6 06-05
CN0100002623 150.00 0.58 0.88 0.90 0.74 8 1 0 0 1 2 0 18 400.00 125.00 0 0.00 40.00 515.00 0.00 3139.00 0.75 0.70 0.0 0.00 0.80 0.45 0.00 0.50 30 400 CN0100002623 6 06-05
CN0100002660 120.00 0.00 0.00 0.00 0.00 19 13 0 0 3 10 0 0 1814.00 2040.00 0 0.00 266.00 1588.00 0.00 0.00 0.72 0.70 0.0 0.00 0.50 0.30 0.00 0.00 46 400 CN0100002660 5 05-02
CN0100002788 117.00 0.54 0.48 0.77 0.00 19 29 0 0 10 33 0 0 1870.00 4050.00 0 0.00 802.00 4754.00 0.00 0.00 0.70 0.70 0.0 0.00 0.30 0.30 0.00 0.00 91 400 CN0100002788 5 05-02
CN0100002796 112.50 0.53 0.00 0.00 0.00 18 19 0 0 15 17 0 0 1689.00 2814.00 0 0.00 1330.00 2417.00 0.00 0.00 0.60 0.50 0.0 0.00 0.30 0.25 0.00 0.00 71 400 CN0100002796 5 05-02
CN0100003913 80.00 0.35 1.00 0.77 0.01 0 1 0 0 24 51 0 1 0.00 22.00 0 0.00 1673.00 5474.00 0.00 56.00 0.00 0.35 0.0 0.00 0.35 0.35 0.00 0.00 77 400 CN0100003913 10 10-01
CN0100003919 70.00 0.35 1.00 1.00 0.39 0 0 0 0 0 11 0 6 0.00 0.00 0 0.00 0.00 820.00 0.00 526.00 0.00 0.00 0.0 0.00 0.00 0.35 0.00 0.35 17 400 CN0100003919 10 10-02
CN0100003923 67.00 0.37 1.00 0.65 0.05 0 0 0 0 38 39 3 3 0.00 0.00 0 0.00 2059.00 3693.00 100.00 231.00 0.00 0.00 0.0 0.00 0.35 0.35 0.35 0.35 84 400 CN0100003923 10 10-01
CN0100003924 78.00 0.35 1.00 0.90 0.34 0 0 0 0 13 41 0 23 0.00 0.00 0 0.00 647.00 3590.00 0.00 2153.00 0.00 0.00 0.0 0.00 0.35 0.35 0.00 0.35 77 400 CN0100003924 10 10-02
CN0100003952 76.50 0.00 0.00 0.00 0.00 0 0 0 0 25 47 0 3 0.00 0.00 0 0.00 58.00 3449.00 0.00 206.00 0.00 0.00 0.0 0.00 0.35 0.35 0.00 0.35 77 400 CN0100003952 10 10-01
CN0100003953 72.00 0.00 0.00 0.00 0.00 0 0 0 0 25 62 0 35 0.00 0.00 0 0.00 710.00 6059.00 0.00 3019.00 0.00 0.00 0.0 0.00 0.35 0.35 0.00 0.35 122 400 CN0100003953 10 10-02
CN0100004959 108.00 0.35 1.00 1.00 0.00 0 0 0 0 0 1 0 0 0.00 0.00 0 0.00 0.00 108.00 0.00 0.00 0.00 0.00 0.0 0.00 0.00 0.35 0.00 0.00 1 400 CN0100004959 10 10-01
CN0100004970 69.00 0.00 0.00 0.00 0.00 0 0 0 0 7 30 0 25 0.00 0.00 0 0.00 339.00 2513.00 0.00 2103.00 0.00 0.00 0.0 0.00 0.35 0.35 0.00 0.35 62 400 CN0100004970 10 10-02
CN0100005013 73.00 0.69 0.74 0.92 0.28 5 4 1 0 0 11 0 7 126.00 437.00 85 0.00 0.00 1237.00 0.00 621.00 1.00 0.60 0.5 0.00 0.00 0.70 0.00 0.60 28 400 CN0100005013 6 06-02
CN0100005015 85.00 0.42 0.87 0.87 0.14 3 0 0 0 0 8 0 2 151.00 0.00 0 0.00 0.00 872.00 0.00 170.00 0.70 0.00 0.0 0.00 0.00 0.40 0.00 0.48 13 400 CN0100005015 6 06-02
CN0100005019 60.00 0.77 0.30 0.33 0.12 96 3 0 1 0 14 0 7 5767.00 154.00 0 100.00 0.00 1606.00 0.00 982.00 0.90 0.50 0.0 0.50 0.00 0.55 0.00 0.40 123 400 CN0100005019 6 06-06
CN0100005020 157.00 0.66 0.94 0.99 0.85 1 0 0 1 0 2 0 13 35.00 0.00 0 150.00 0.00 439.00 0.00 2468.00 1.60 0.00 0.0 0.80 0.00 0.60 0.00 0.70 17 400 CN0100005020 6 06-05
CN0100005258 69.00 2.92 0.85 0.03 0.00 1 1 0 0 9 0 0 0 110.00 29.00 0 0.00 753.00 0.00 0.00 0.00 0.50 0.80 0.0 0.00 1.00 0.00 0.00 0.00 12 400 CN0100005258 1 01-01
CN0100005259 59.00 0.00 0.00 0.00 0.00 2 0 0 0 42 2 0 0 120.00 0.00 0 0.00 2795.00 181.00 0.00 0.00 0.50 0.00 0.0 0.00 0.50 0.75 0.00 0.00 46 400 CN0100005259 1 01-01
CN0100005260 57.00 0.00 0.00 0.00 0.00 10 2 0 0 37 4 0 0 499.00 154.00 0 0.00 2383.00 299.00 0.00 0.00 0.60 0.60 0.0 0.00 0.50 0.65 0.00 0.00 53 400 CN0100005260 1 01-01
CN0100005261 67.00 0.00 0.00 0.00 0.00 7 0 0 0 32 6 0 0 544.00 0.00 0 0.00 1912.00 477.00 0.00 0.00 0.60 0.00 0.0 0.00 0.50 0.60 0.00 0.00 45 400 CN0100005261 1 01-01
CN0100005280 59.00 0.64 0.86 0.16 0.00 5 1 0 0 39 6 0 0 342.00 84.00 0 0.00 2275.00 397.00 0.00 0.00 0.90 1.50 0.0 0.00 0.50 0.45 0.00 0.00 51 400 CN0100005280 1 01-01
CN0100005281 70.00 0.60 0.80 0.09 0.00 8 2 0 0 31 2 0 0 561.00 143.00 0 0.00 2575.00 161.00 0.00 0.00 0.55 0.88 0.0 0.00 0.50 0.65 0.00 0.00 43 400 CN0100005281 1 01-01
CN0100010502 60.50 0.85 0.33 0.35 0.10 61 2 0 0 0 13 0 6 3715.00 132.00 0 0.00 0.00 1279.00 0.00 601.00 1.00 0.70 0.0 0.00 0.00 0.50 0.00 0.65 82 400 CN0100010502 6 06-06
CN0100010503 65.00 0.84 0.18 0.37 0.03 17 5 0 0 0 4 0 1 1196.00 354.00 0 0.00 0.00 286.00 0.00 65.00 1.00 0.50 0.0 0.00 0.00 1.00 0.00 1.00 27 400 CN0100010503 6 06-06
CN0100011500 130.12 0.49 0.93 0.82 0.15 0 0 0 0 14 21 0 5 0.00 0.00 0 0.00 1052.27 3741.67 0.00 911.88 0.00 0.00 0.0 0.00 0.32 0.30 0.00 0.30 44 400 CN0100011500 4 04-06

Clustering

a <- scale(agcs[model_columns])
d <- dist(a, method = "euclidean")
clsize <- 20
agcs$cluster.nn.min <-
    fixed_size_clustering_nearest_neighbor(d, size = clsize, method = "min")
agcs$cluster.hc.wardD2 <-
    fixed_size_clustering_hclust(d, size = clsize, method = "ward.D2")
agcs$cluster.km.rst.rng <-
    fixed_size_clustering_kmeans(a, size = clsize, method = "range")
agcs$cluster.km.std <-
    kmeans(a, ceiling(nrow(a) / clsize))$cluster

cols <- viridisLite::viridis(max(agcs$cluster.nn.min))

library("pvclust")
pv <- pvclust(
    t(a), method.hclust = "ward.D2", method.dist = "euclidean",
    nboot = 100,
    quiet = TRUE
)
pvd <- as.dendrogram(pv)
par(mar = c(12, 2, 2, 1))
plot(pvd)
text(pv)
cls <- cbind(
    nn.min = agcs$cluster.nn.min,
    km.rst.rng = agcs$cluster.km.rst.rng,
    km.std = agcs$cluster.km.std,
    hc.wardD2 = agcs$cluster.hc.wardD2
)
cls[] <- cols[cls]
colored_bars(cls, pvd)
colored_bars(
    cbind(
        center = agcs$center,
        or.id = match(agcs$or, unique(agcs$or))
    ),
    pvd, y_shift = -3.5
)

wss <- sapply(
    list(
        nn.min = agcs$cluster.nn.min,
        km.rst.rng = agcs$cluster.km.rst.rng,
        km.std = agcs$cluster.km.std,
        hc.wardD2 = agcs$cluster.hc.wardD2
    ),
    within_cluster_sum_of_squares, x = a
)
tss <- total_sum_of_squares(a)

col <- seq_len(ncol(wss))
barplot(
    t(wss), col = col, beside = TRUE,
    main = "Within cluster sum of squares"
)
legend("topright", legend = colnames(wss), col = col, pch = 15)

barplot(
    1 - colSums(wss) / tss, col = col, horiz = TRUE,
    main = "Between/Total sum of squares"
)
legend(
    "bottomright",
    legend = colnames(wss),
    col = col, pch = 15,
    bty = "n"
)

Lineare Regression

Behalte nur Filter mit 20 Filtern pro Gruppe.

keep <-
    agcs$cluster.hc.wardD2 %in% which(table(agcs$cluster.hc.wardD2) == clsize)
table(keep)
## keep
## FALSE  TRUE 
##    15   100
## 
## Call:
## lm(formula = weight ~ 0 + n.cases.lama.nonlap.tiva + n.cases.tube.nonlap.tiva + 
##     n.cases.tube.lap.tiva + n.cases.lama.nonlap.inha + n.cases.tube.nonlap.inha + 
##     n.cases.tube.lap.inha + sum.dura.lama.nonlap.tiva + sum.dura.tube.nonlap.tiva + 
##     sum.dura.tube.lap.tiva + sum.dura.lama.nonlap.inha + sum.dura.tube.nonlap.inha + 
##     sum.dura.tube.lap.inha + med.flow.lama.nonlap.tiva + med.flow.tube.nonlap.tiva + 
##     med.flow.tube.lap.tiva + med.flow.lama.nonlap.inha + med.flow.tube.nonlap.inha + 
##     med.flow.tube.lap.inha, data = agcs[keep, ])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -192.41  -39.16   22.15   61.59  333.37 
## 
## Coefficients:
##                             Estimate Std. Error t value Pr(>|t|)    
## n.cases.lama.nonlap.tiva   -0.042444   4.086557  -0.010 0.991738    
## n.cases.tube.nonlap.tiva   -7.304116   5.120712  -1.426 0.157553    
## n.cases.tube.lap.tiva      -6.295621  33.711732  -0.187 0.852319    
## n.cases.lama.nonlap.inha   -0.784985   2.907630  -0.270 0.787858    
## n.cases.tube.nonlap.inha    7.188707   1.895882   3.792 0.000285 ***
## n.cases.tube.lap.inha      -0.255127   2.038986  -0.125 0.900731    
## sum.dura.lama.nonlap.tiva  -0.002063   0.070092  -0.029 0.976589    
## sum.dura.tube.nonlap.tiva   0.090652   0.045058   2.012 0.047514 *  
## sum.dura.tube.lap.tiva     -0.238829   0.253880  -0.941 0.349614    
## sum.dura.lama.nonlap.inha   0.045593   0.045539   1.001 0.319687    
## sum.dura.tube.nonlap.inha  -0.045278   0.014114  -3.208 0.001908 ** 
## sum.dura.tube.lap.inha      0.005745   0.009286   0.619 0.537866    
## med.flow.lama.nonlap.tiva  -3.017055   7.067105  -0.427 0.670560    
## med.flow.tube.nonlap.tiva  55.046043  22.806095   2.414 0.018021 *  
## med.flow.tube.lap.tiva     46.789788  34.850073   1.343 0.183106    
## med.flow.lama.nonlap.inha  54.199162  26.165970   2.071 0.041469 *  
## med.flow.tube.nonlap.inha 438.517041  58.406305   7.508 6.53e-11 ***
## med.flow.tube.lap.inha    127.477238  59.321182   2.149 0.034588 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 100.8 on 82 degrees of freedom
## Multiple R-squared:  0.9479, Adjusted R-squared:  0.9364 
## F-statistic: 82.85 on 18 and 82 DF,  p-value: < 2.2e-16

Penalized Regression

y <- agcs[keep, "weight"]

X <- model.matrix(
weight ~ 0 +
    n.cases.lama.nonlap.tiva +
    n.cases.tube.nonlap.tiva +
    n.cases.tube.lap.tiva +
    n.cases.lama.nonlap.inha +
    n.cases.tube.nonlap.inha +
    n.cases.tube.lap.inha +
    sum.dura.lama.nonlap.tiva +
    sum.dura.tube.nonlap.tiva +
    sum.dura.tube.lap.tiva +
    sum.dura.lama.nonlap.inha +
    sum.dura.tube.nonlap.inha +
    sum.dura.tube.lap.inha +
    med.flow.lama.nonlap.tiva +
    med.flow.tube.nonlap.tiva +
    med.flow.tube.lap.tiva +
    med.flow.lama.nonlap.inha +
    med.flow.tube.nonlap.inha +
    med.flow.tube.lap.inha,
    data = agcs[keep, ]
)

## TODO: replace y with measured weight and drop `jitter` call (just used to
## avoid error about constant y)
Y <- jitter(y)

## TODO: increase nrepcv and nfolds for final calculations
## number of repeated cv for model estimation
nrepcv <- 2
## number of cv folds for model estimation
nfolds <- 5
## number of repeated cv for mse estimation (authors of nested_cv suggest at
## least 50)
mse.nrepcv <- 5
## number of cv folds for mse estimation
mse.nfolds <- 5
## percentage of training data
ptrain <- 0.8

## helper functions
se_loss_rcv.glmnet <- function(y1, y2, funcs_params = NULL) {
    (y1 - y2)^2
}

fitter_rcv.glmnet <- function(X, Y, idx = seq_len(nrow(X)), funcs_params = NULL) {
    rcv.glmnet(
        X[idx, ], Y[idx],
        lambda = funcs_params$lambda,
        alpha = funcs_params$alpha,
        intercept = funcs_params$intercept,
        nfolds = funcs_params$nfolds,
        nrepcv = funcs_params$nrepcv
    )
}

predictor_rcv.glmnet <- function(fit, X_new, funcs_params = NULL) {
    predict(fit, X_new, s = funcs_params$s)
}

funcs_rcv.glmnet <- list(
    fitter = fitter_rcv.glmnet,
    predictor = predictor_rcv.glmnet,
    loss = se_loss_rcv.glmnet
)

params <- list(
    alpha = 1,
    s = "lambda.1se",
    intercept = FALSE,
    nfolds = nfolds,
    nrepcv = nrepcv
)

set.seed(1)
nr <- nrow(X)
ntrain <- ceiling(nr * ptrain)
train_idx <- sample(seq_len(nr), ntrain, replace = FALSE)
test_idx <- setdiff(seq_len(nr), train_idx)
X_train <- X[train_idx, ]
Y_train <- Y[train_idx]

## fit once to keep lambda/best lambda fixed
fit <- funcs_rcv.glmnet$fitter(X_train, Y_train, funcs_params = params)
params$lambda <- fit$lambda
params$lambda.min <- fit$lambda.min

out <- nested_cv(
    X_train, Y_train,
    funcs = funcs_rcv.glmnet,
    n_folds = mse.nfolds,
    reps = mse.nrepcv,
    n_cores = parallel::detectCores(),
    funcs_params = params,
    alpha = 0.05
)
out[["ho_err"]] <- mean(funcs_rcv.glmnet$loss(
    funcs_rcv.glmnet$predictor(fit, X[test_idx, ], funcs_params = params),
    Y[test_idx],
    funcs_params = params
))
out
## $sd_infl
## [1] 2.05594
## 
## $err_hat
## [1] 12117.75
## 
## $ci_lo
## [1] 2675.213
## 
## $ci_hi
## [1] 21560.3
## 
## $raw_mean
## [1] 16126.8
## 
## $bias_est
## [1] 4009.044
## 
## $sd
## [1] 20959.23
## 
## $running_sd_infl
## [1] 2.234049 1.629108 1.310869 2.368953 2.055940
## 
## $ho_err
## [1] 21990.32
# RMSE
sqrt(c(out$err_hat, out$ho_err))
## [1] 110.0807 148.2913
knitr::kable(
    cbind(
        as.matrix(coef(fit, s = "lambda.1se")),
        as.matrix(coef(fit, s = "lambda.min"))[, 1]
    ),
    col.names = c("variable", "s, lambda.1se", "s, lambda.min")
)
variable s, lambda.1se s, lambda.min
(Intercept) 0.0000000 0.0000000
n.cases.lama.nonlap.tiva 0.0000000 0.0000000
n.cases.tube.nonlap.tiva 0.4214514 0.1315508
n.cases.tube.lap.tiva 0.0000000 0.0000000
n.cases.lama.nonlap.inha 0.3769085 1.6238570
n.cases.tube.nonlap.inha 0.7961580 1.1750376
n.cases.tube.lap.inha 0.0000000 0.2915502
sum.dura.lama.nonlap.tiva 0.0000000 0.0000000
sum.dura.tube.nonlap.tiva 0.0000000 0.0172158
sum.dura.tube.lap.tiva 0.0000000 0.0000000
sum.dura.lama.nonlap.inha 0.0000000 0.0000000
sum.dura.tube.nonlap.inha 0.0000000 0.0000000
sum.dura.tube.lap.inha 0.0000000 0.0000000
med.flow.lama.nonlap.tiva 0.0000000 0.0000000
med.flow.tube.nonlap.tiva 14.0615461 32.8824082
med.flow.tube.lap.tiva 0.0000000 0.0000000
med.flow.lama.nonlap.inha 0.0000000 41.7585752
med.flow.tube.nonlap.inha 650.7237702 572.9804087
med.flow.tube.lap.inha 0.0000000 0.0000000
plot(fit)

plot(fit, "path")